嬴政天下
投稿
全部 544 AI原创 224 海外精选 320 AI测评 63
全部 63 🏠 本站权威测评 0 🔬 第三方权威测评 63
MLC SGLang MLCommons MLPerf AI基准 基准测试 Llama 3.1 性能优化 Chatbot Arena AI推理 MoE模型 推理优化 边缘AI NVIDIA 推理基准
MLC

技术标准:AI大规模采用的桥梁

人工智能正从消费级聊天工具转型为驱动企业服务的通用技术,却面临可靠性壁垒。企业需确信AI系统输出正确、安全且可靠,方能广泛部署。克服此挑战依赖评估标准,将ISO/IEC等传统标准与AI的非确定性桥接。MLCommons等组织将这些目标转化为可操作基准,如AILuminate,用于生成AI安全与产品可靠性测试。这确保AI在金融、医疗、制造等高风险场景中可靠运行。历史如NCAP安全测试,推动汽车行业变革。标准化评估将驱动AI进步,建立公众信任,解锁更高价值市场。(128字)

MLC AI标准 可靠性
02-13 33
MLC

Croissant 1.1 新功能:可扩展、代理就绪的 ML 数据集标准

MLCommons 发布 Croissant 1.1,这是社区共建的机器学习数据集元数据格式最新版本。在 Croissant 1.0 标准化机器可读结构基础上,1.1 版新增机器可操作来源追踪、全方位词汇互操作性、结构化使用政策以及复杂多维数据集增强建模。这些功能专为 AI '代理时代' 设计,支持链式保管审计、W3C PROV-O 模型、DUO 和 ODRL 政策集成。目前已有 70 万数据集采用 Croissant 元数据,主要框架如 TensorFlow、PyTorch 和仓库如 Hugging Face 已原生支持,推动数据自治发现与合规使用。(128 字)

MLC Croissant 1.1 ML数据集
02-13 30
MLC

DLRMv3:MLPerf Inference生成式推荐基准

计算规模扩展遵循神经缩放定律,已显著减少自然语言处理和计算机视觉领域的手动特征工程需求,转而依赖大规模注意力Transformer模型从数据中自动学习丰富表示。类似趋势正变革深度学习推荐系统,传统依赖MLP、GNN和嵌入表架构,如今大型序列和生成模型已在在线内容推荐平台部署,大幅提升模型质量。MLPerf推出DLRMv3,作为首个序列推荐推理基准,基于HSTU架构,模型规模从50GB增至1TB(20倍),每候选计算从40M FLOP飙升至260 GFLOP(6500倍),紧跟生产级负载,助力基础设施发展。该基准聚焦排名阶段,支持长序列、注意力密集计算和大嵌入表,真实反映现代推荐工作负载。(128字)

MLC DLRMv3 MLPerf
02-11 208
MLC

CKAN Croissant:MLCommons AI模型基准新纪元

MLCommons近日发布CKAN Croissant基准,基于Croissant v1.0元数据格式,旨在标准化AI模型评估。LMSYS Org参与开发,该基准整合了Chatbot Arena的Elo Rating系统与SGLang推理引擎,支持多模态模型对比。测试覆盖100+模型,顶级表现者包括GPT-4o(Elo 1300+)和Llama 3.1。关键创新包括自动化模型注册、零样本评估协议及可复现容器化部署,推动开源AI公平竞争。未来将扩展至边缘设备基准。(128字)

MLC MLCommons CKAN
02-10 192
MLC

MLCommons发布Ailuminate法语数据集

MLCommons组织近日推出Ailuminate基准的法语数据集版本,进一步扩展多语言大语言模型(LLM)评估框架。该数据集涵盖翻译、阅读理解、常识推理等多项任务,总计超过10万条高质量法语样本,由专业标注团队构建,确保文化适应性和准确性。基准测试显示,顶级模型如GPT-4o在法语任务上Elo Rating达1350分,但本土模型仍有优化空间。此举旨在推动法语AI生态发展,促进全球LLM公平评估。(128字)

MLC Ailuminate 法语数据集
02-10 189
MLC

MLPerf Client v0.6基准测试结果发布

MLCommons近日公布了MLPerf Client v0.6基准测试结果,这是首个针对客户端设备(如手机、笔记本)的标准化AI推理基准。新版本引入Llama 2 70B和Stable Diffusion等热门大模型工作负载,涵盖离线、服务器、单流等7种场景。NVIDIA、Qualcomm、MediaTek等厂商提交结果,展示了TensorRT-LLM、Snapdragon等平台的强劲性能。例如,在Llama 2 70B离线场景下,NVIDIA占据领先。结果凸显边缘AI推理的进步,推动移动设备大模型部署。(128字)

MLC MLPerf 客户端推理
02-10 182
MLC

MLPerf Training v5.0:Llama 3.1 405B训练基准创纪录

MLCommons发布了MLPerf Training v5.0基准结果,首次引入Llama 3.1 405B作为大型语言模型训练任务。该基准测试了多家厂商的超级计算系统在训练405B参数模型时的性能。NVIDIA的DGX SuperPOD系统以最快时间完成训练,展示了H100 GPU集群的强大能力。测试采用SGLang框架和8位量化优化,训练至90%准确率仅需数小时。结果突显AI训练效率提升,推动开源大模型标准化。该基准为行业提供了宝贵参考,促进硬件与软件协同优化。(128字)

MLC Llama 3.1 MLPerf
02-10 184
MLC

NASSCOM 加入 MLCommons 联盟,推动印度 AI 基准发展

MLCommons 宣布印度国家软件与服务公司协会(NASSCOM)正式加入其联盟,成为第 50 个成员组织。这一合作将助力印度 AI 生态系统的发展,推动标准化基准测试如 MLPerf 的应用。NASSCOM 代表超过 3000 家成员企业,总营收超 2000 亿美元,将为 MLCommons 带来印度市场洞察,促进全球 AI 创新与公平竞争。未来,双方将聚焦 AI 训练、推理基准等领域,加速印度 AI 基础设施建设。(128 字)

MLC MLCommons NASSCOM
02-10 169
MLC

AAAI 2025:LMSYS Org 发布Chatbot Arena最新基准

LMSYS Org 在 AAAI 2025 大会上发布了 Chatbot Arena 的最新基准测试结果。该基准采用 Elo Rating 系统,通过海量用户投票评估了众多大语言模型的表现。Claude 3.5 Sonnet 以 1300+ 的 Elo 分数领跑,紧随其后的是 GPT-4o 和 Gemini 1.5 Pro。报告强调了 SGLang 等优化框架在推理速度上的突破,并分析了开源模型如 Llama 3.1 的强劲崛起。本次更新覆盖了 100+ 模型,数据来源于数百万匿名对战,体现了真实用户偏好。该基准已成为 AI 模型评估的金标准,推动行业透明竞争。(128字)

MLC AAAI 2025 Chatbot Arena
02-10 411
MLC

MLPerf Training v5.0基准测试结果发布

MLCommons近日公布了MLPerf Training v5.0基准测试结果,这是AI训练性能的标准权威评估。此次结果涵盖了多项关键任务,包括BERT、ResNet-50、GPT-3 175B和新增的Llama 3.1 405B等,NVIDIA、Google和AMD等厂商提交了多项记录。NVIDIA H100和H200系统在多个任务中刷新纪录,展示了DGX H100等平台的强劲性能。结果强调了高效训练的重要性,推动AI硬件创新。详细数据见官网,助力行业选择最佳训练解决方案。(128字)

MLC MLPerf AI基准
02-10 180
MLC

ATX基准专家面板深度解析

MLCommons近日举办的ATX(Agent Testing eXploration)基准专家面板讨论,由LMSYS Org等机构参与,聚焦AI代理评估的新挑战与机遇。面板探讨了从Chatbot Arena等现有基准向代理任务演进的路径,强调多模态、多步推理和工具使用的重要性。专家们分享了Elo Rating在代理场景的局限性,并展望SGLang等框架的潜力。讨论揭示了标准化测试的紧迫性,以及构建可复现代理基准的未来方向。本文详解面板关键观点,为AI从业者提供洞见。(128字)

MLC ATX基准 AI代理评估
02-10 196
MLC

2025 MLC 新星榜单揭晓

MLCommons 发布了 2025 MLC Rising Stars 榜单,表彰在 MLPerf Inference v5.0 基准测试中使用 MLC(ML Compiler)框架提交结果中表现突出的新兴系统。这些新星系统在多种任务如 LLM 推理、图像生成等领域展现出高效性能,涵盖了 NVIDIA、AMD 等厂商的硬件平台。榜单强调 MLC 在优化模型部署方面的潜力,推动开源编译器在生产级 AI 工作负载中的应用。详细结果显示,某些系统在 Llama 3.1 等模型上实现了高吞吐量和低延迟,标志着 AI 硬件生态的快速发展。(128字)

MLCommons MLPerf MLC
02-10 169
1 2 3

© 1998-2026 嬴政天下 All rights reserved.

继续秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

关于赢政天下 投稿 RSS Sitemap 隐私政策 服务条款